Picosecond 554 nm yellow - green fiber laser source with average power over 1
نویسندگان
چکیده
We demonstrate a source of 554 nm pulses with 2.7 ps pulse duration and 1.41 W average power, at a repetition rate of 300 MHz. The yellow-green pulse train is generated from the second harmonic of a 1.11 μm fiber laser source in periodically-poled stoichiometric LiTaO3. A total fundamental power of 2.52 W was used, giving a conversion efficiency of 56%. © 2014 Optical Society of America OCIS codes: (140.3515) Lasers, frequency doubled; (060.2320) Fiber optics amplifiers and oscillators; (190.7110) Ultrafast nonlinear optics. References and links 1. M. F. Garcia-Parajo, M. Koopman, E. M. van Dijk, V. Subramaniam, and N. F. van Hulst, “The nature of fluorescence emission in the red fluorescent protein DsRed, revealed by single-molecule detection,” Proc. Natl. Acad. Sci. U.S.A. 98, 14392–14397 (2001). 2. G. R. Castro, B. K. Larson, B. Panilaitis, and D. L. Kaplan, “Emulsan quantitation by Nile red quenching fluorescence assay,” Appl. Microbiol. Biot. 67, 767–770 (2005). 3. P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980). 4. T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999). 5. H. Yu, K. Wu, H. Zhang, Z. Wang, J. Wang, and M. Jiang, “Nd:YGG crystal laser at 1110 nm: a potential source for detecting carbon monoxide poisoning,” Opt. Lett. 36, 1281–1283 (2011). 6. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). 7. Z. Wang, Q. Peng, Y. Bo, J. Xu, S. Xie, C. Li, Y. Xu, F. Yang, Y. Wang, D. Cui, and Z. Xu, “Yellow-green 52.3W laser at 556nm based on frequency doubling of a diode side-pumped Q-switched Nd:YAG laser,” Appl. Opt. 49, 3465–3469 (2010). 8. S. V. Kurbasov and L. L. Losev, “Raman compression of picosecond microjoule laser pulses in KGd(WO4)2 crystal,” Opt. Commun. 168, 227–232 (1999). 9. E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17, 569–574 (2009). 10. E. Granados, H. M. Pask, E. Esposito, G. McConnell, and D. J. Spence, “Multi-wavelength, all-solid-state, continuous wave mode locked picosecond Raman laser,” Opt. Express 18, 5289–5294 (2010). 11. F. Gérôme, P. Dupriez, J. Clowes, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express 16, 2381– 2386 (2008). 12. S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, “High-energy femtosecond 1086/543-nm fiber system for nanoand micromachining in transparent materials and on solid surfaces,” Laser Phys. 21, 308–311 (2011). #211288 $15.00 USD Received 1 May 2014; revised 27 Jun 2014; accepted 30 Jun 2014; published 14 Jul 2014 (C) 2014 OSA 28 July 2014 | Vol. 22, No. 15 | DOI:10.1364/OE.22.017716 | OPTICS EXPRESS 17716 13. M. E. Fermann and I. Hartl, “Ultrafast Fiber Laser Technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191– 206 (2009). 14. D. Kielpinski, M. G. Pullen, J. Canning, M. Stevenson, P. S. Westbrook, and K. S. Feder, “Mode-locked picosecond pulse generation from an octave-spanning supercontinuum,” Opt. Express 17, 20833–20839 (2009). 15. K. Kieu, R. J. Jones, and N. Peyghambarian, “High power femtosecond source near 1 micron based on an all-fiber Er-doped mode-locked laser,” Opt. Express 18, 21350–21355 (2010). 16. G. Ycas, S. Osterman, and S. A. Diddams, “Generation of a 660-2100 nm laser frequency comb based on an erbium fiber laser,” Opt. Lett. 37, 2199–2201 (2012). 17. V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Highly efficient green-light generation by quasi-phase-matched frequency doubling of picosecond pulses from an amplified mode-locked Nd:YLF laser,” Opt. Lett. 21, 390–392 (1996). 18. M. A. Arbore, M. M. Fejer, M. E. Fermann, A. Hariharan, A. Galvanauskas, and D. Harter, “Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically poled lithium niobate,” Opt. Lett. 22, 13–15 (1997). 19. M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, “High-power 100-fs pulse generation by frequency doubling of an erbium ytterbium-fiber master oscillator power amplifier,” Opt. Lett. 23, 1840–1842 (1998). 20. H. Zhu, T. Wang, W. Zheng, P. Yuan, L. Qian, and D. Fan, “Efficient second harmonic generation of femtosecond laser at one micron,” Opt. Express 12, 2150–2155 (2004). 21. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78, 1970–1972 (2001). 22. A. Bruner, D. Eger, M. B. Oron, P. Blau, M. Katz, and S. Ruschin, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194–196 (2003). 23. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002). 24. O. A. Louchev, N. E. Yu, S. Kurimura, and K. Kitamura, “Thermal inhibition of high-power second-harmonic generation in periodically poled LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 87, 131101 (2005). 25. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, “Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate,” Opt. Express 16, 11294–11299 (2008). 26. H. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and I. Shoji, “Thermal performance in high power SHG characterized by phase-matched calorimetry,” Opt. Express 19, 22588–22593 (2011). 27. A. Sahm, M. Uebernickel, K. Paschke, G. Erbert, and G. Tränkle, “Thermal optimization of second harmonic generation at high pump powers,” Opt. Express 19, 23029–23035 (2011).
منابع مشابه
Picosecond 554 nm yellow-green fiber laser source with average power over 1 W.
We demonstrate a source of 554 nm pulses with 2.7 ps pulse duration and 1.41 W average power, at a repetition rate of 300 MHz. The yellow-green pulse train is generated from the second harmonic of a 1.11 μm fiber laser source in periodically-poled stoichiometric LiTaO3. A total fundamental power of 2.52 W was used, giving a conversion efficiency of 56%.
متن کاملStable, high-power, Yb-fiber-based, picosecond ultraviolet generation at 355 nm using BiB3O6.
We report a stable, high-power, high-repetition-rate, picosecond ultraviolet (UV) source at 355 nm based on single-pass sum-frequency generation of a mode-locked Yb-fiber laser at 1064 nm in the nonlinear crystal BiB3O6. By performing single-pass second-harmonic generation (SHG) in a 30-mm-long LiB3O5 crystal, up to 9.1 W of average green power at 532 nm is obtained at a single-pass SHG efficie...
متن کامل201 W picosecond green laser using a mode-locked fiber laser driven cryogenic Yb:YAG amplifier system.
We have generated 201 W of green (514.5 nm) average power from a frequency-doubled picosecond cryogenic Yb:YAG laser system driven by a 50 MHz, 12.4 ps mode-locked Yb fiber laser producing 430 W of average power at 1029 nm, using direct pulse amplification. The fundamental beam produced was near-diffraction-limited (M(2)<1.3). Second-harmonic-generation is achieved using a 20 mm long noncritica...
متن کامل130-W picosecond green laser based on a frequency-doubled hybrid cryogenic Yb:YAG amplifier.
130-W average-power picosecond green laser pulses at 514.5 nm are generated from a frequency-doubled hybrid cryogenic Yb:YAG laser. A second-harmonic conversion efficiency of 54% is achieved with a 15-mm-long noncritically phase-matched lithium triborate (LBO) crystal from a 240-W 8-ps 78-MHz pulse train at 1029 nm. The high-average-power hybrid laser system consists of a picosecond fiber chirp...
متن کاملHigh-power picosecond fiber source for coherent Raman microscopy.
We report a high-power picosecond fiber pump laser system for coherent Raman microscopy (CRM). The fiber laser system generates 3.5 ps pulses with 6 W average power at 1030 nm. Frequency doubling yields more than 2 W of green light, which can be used to pump an optical parametric oscillator to produce the pump and the Stokes beams for CRM. Detailed performance data on the laser and the various ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014